• EN
  • FR
  • ZH
  • DE
  • PT
  • IT
IOT See the difference
  • EN
  • FR
  • ZH
  • DE
  • PT
  • IT
  • Discover our lenses
    • Endless AI (New)
    • Progressive solutions
      • Camber Steady Plus Progressive
      • Endless Steady Progressive
      • Essential Steady Progressive
      • Endless Drive Progressive
      • Endless Sport Progressive
      • Endless Pilot Progressive
    • Occupational solutions
      • Endless Office Occupational
    • Bifocal solutions
      • Endless Bifocal
    • Single vision solutions
      • Endless Single Vision
      • Endless Anti-fatigue Single Vision
      • Endless Drive Single Vision
    • Neochromes
      • Neochromes Experience
      • Neochromes
      • Neochromes with Camber Technology
      • Neochromes Dark
      • Instructions for Use
    • Lens comparisons
  • Technologies
    • Camber Technology
    • IOT Digital Ray Path 2 Technology
    • Steady Methodology
    • Steady Plus Methodology
  • Services
    • IOT Business Consulting
    • IOT Technical Services
    • IOT Marketing Services
    • IOT Client Hub
    • IOT Solutions
  • Blog
  • Resource Hub
  • About IOT
    • Our company
    • IOT Intelligence
      • Our innovation ecosystem
      • Our innovation methodology
      • IOT Freeform Designer
      • Intelligent technologies
    • The IOT Experience
    • Innovation as service
    • IOT Events
    • Projects and Collaborations
    • IOT Ethics and Transparency
  • Contact us
    • Contact sales
    • Careers
  • Visit light-form.com
  • Discover our lenses
    • Endless AI (New)
    • Progressive solutions
      • Camber Steady Plus Progressive
      • Endless Steady Progressive
      • Essential Steady Progressive
      • Endless Drive Progressive
      • Endless Sport Progressive
      • Endless Pilot Progressive
    • Occupational solutions
      • Endless Office Occupational
    • Bifocal solutions
      • Endless Bifocal
    • Single vision solutions
      • Endless Single Vision
      • Endless Anti-fatigue Single Vision
      • Endless Drive Single Vision
    • Neochromes
      • Neochromes Experience
      • Neochromes
      • Neochromes with Camber Technology
      • Neochromes Dark
      • Instructions for Use
    • Lens comparisons
  • Technologies
    • Camber Technology
    • IOT Digital Ray Path 2 Technology
    • Steady Methodology
    • Steady Plus Methodology
  • Services
    • IOT Business Consulting
    • IOT Technical Services
    • IOT Marketing Services
    • IOT Client Hub
    • IOT Solutions
  • Blog
  • Resource Hub
  • About IOT
    • Our company
    • IOT Intelligence
      • Our innovation ecosystem
      • Our innovation methodology
      • IOT Freeform Designer
      • Intelligent technologies
    • The IOT Experience
    • Innovation as service
    • IOT Events
    • Projects and Collaborations
    • IOT Ethics and Transparency
  • Contact us
    • Contact sales
    • Careers
  • Visit light-form.com

Back to Blog

Lens Errors in Optical Labs: How to Identify & Prevent Costly Mistakes

Lens Errors in Optical Labs: How to Identify & Prevent Costly Mistakes

Published 8 oct 2025 | 7 min
Category Manufacturing
Author
Victor Mayoral Bruno
Victor Mayoral Bruno
Process Engineer Manager

  • Common lens errors
  • 1. Optical aberrations
  • On-axis aberrations
  • Off-axis aberrations
  • 2. Prescription errors
  • 3. Manufacturing defects
  • Surfacing errors
  • Coating issues
  • Other physical defects
  • How to reduce lens errors in an optical lab
  • Pre-production verification
  • In-process quality control
  • Final quality verification
  • Measurement tools for detecting errors
  • How to solve and prevent lens errors in your optical lab
  • 1. Staff training and development
  • 2. Equipment maintenance & calibration
  • 3. Process optimization
  • Solving lens errors when they occur
  • Why choose IOT for lens design and manufacturing support
Lens Errors in Optical Labs: How to Identify & Prevent Costly Mistakes

Lens Errors in Optical Labs: How to Identify & Prevent Costly Mistakes

Lens errors are more than just quality control issues. They represent potential profit loss through remakes, customer dissatisfaction, and reputational damage. Modern free-form surfacing can get amazing optics out of ever-thinner materials, but the manufacturing window has also grown tighter. For optical laboratories, the pressure for error-free services requires maintaining high standards, operational efficiency, and a detailed knowledge of the most prevalent lens errors. 

Common lens errors

Lens errors are the optical, geometric, or cosmetic discrepancies between the prescribed lens and the one that comes out of the lab. These deviations can appear at any production step and, if left undetected, degrade visual clarity, wearer comfort, and your bottom line. Common lens errors include:

1. Optical aberrations

Optical aberrations are deviations from perfect image formation that affect visual clarity and comfort. These can be categorized as on-axis and off-axis errors, though all of them come from small departures between the ideal and the real wavefront as it­ travels through the lens:

On-axis aberrations

These occur along the optical axis and include:

  • Spherical aberration: Light rays passing through different zones of the lens focus at different points
  • Longitudinal chromatic aberration: Different wavelengths of light focus at different points, creating color fringing and a reduction in sharpness, especially in high-power prescriptions. Though good to know, this is less common than off-axis chromatic aberration, so patients complain less frequently about longitudinal chromatic aberration. 

Off-axis aberrations

These occur away from the optical center:

  • Transverse chromatic aberration: Patients will see color fringing at the edges of objects as the colors don’t line up side-by-side. This is much more commonly reported and noticeable to wearers than longitudinal chromatic aberration, especially in polycarbonate lenses and lenses that are not properly centered in the frame.
  • Coma: Off-axis point sources appear comet-shaped rather than circular
  • Astigmatism: Images appear stretched in certain directions
  • Field curvature: The focus surface is curved rather than flat
  • Distortion: Straight lines appear curved (barrel or pincushion distortion)

These aberrations often occur due to: 

  • Algorithm errors in lens design software
  • Incorrect lens material selection for the design
  • Improper calibration of surfacing equipment
  • The optical center isn’t aligned with the wearer’s pupil
  • The optical axis of the lens is not aligned with the visual axis
  • Choosing materials with poor off-axis performance

2. Prescription errors

A prescription error happens when the optical values manufactured into a lens deviate from the refraction written by the prescriber, even though the surfacing and coating steps may be mechanically perfect.

A pervasive point of confusion in free-form manufacturing surrounds compensated powers. Freeform lenses should be checked against the compensated power(referred to as the verification power in ISO standards) rather than the prescribed power. This value accounts for the patient’s position-of-wear parameters, so checking only against the original written prescription can lead to the false conclusion that the lens is “wrong.” 

Power errors often are: 

  • Incorrect sphere power: The dioptric power of the lens doesn't match the prescribed value
  • Wrong cylinder power: Astigmatism correction is inaccurate
  • Axis misalignment: The cylinder axis doesn't match the prescription, causing induced astigmatism
  • Add power inaccuracies: Incorrect near-vision power in progressive or bifocal lenses
  • Unintended prism: Prism present in the lens that was not prescribed, typically introduced by equipment misalignment or calibration errors during surfacing.

These errors typically stem from:

  • Transcription mistakes during order entry
  • Misreading handwritten prescriptions
  • Software errors in digital lens production
  • Operator error in lens measurement verification, especially when failing to check against compensated powers in freeform lenses

3. Manufacturing defects

Manufacturing defects are physical flaws introduced during lens production on the lab floor. Unlike prescription errors, which stem from incorrect data, these defects may result from deviations in the process (regarding variables such as temperature, tool calibrations, etc.). They typically arise during precision-dependent steps such as coating and surfacing, where even minor deviations can compromise optical performance and durability.

Manufacturing defects can be grouped into three categories: 

Surfacing errors

Surfacing is the process of shaping a semifinished blank into the final prescription lens. Errors at this stage directly impact accuracy, geometry, and wearer vision.
Examples include:

  • Blocking: base curve deviation or warping, unintended prism, or thickness errors due to faulty blocking rings or miscalibration
  • Generating: axis misalignment, central dots, incorrect thickness, or prism from poor tool adjustment or unstable temperatures
  • Polishing: under- or over-polishing, scratches from slurry contamination, or incomplete polish
  • Engraving: displaced or weak engravings that complicate verification
  • Deblocking/handling: cracked or warped lenses from poor automation setup or thermal stress

Because each substep builds on the previous one, tight process control, precise calibration, and strict cleanliness are critical to prevent compounding errors.

Coating issues

A coating defect is any imperfection in the multilayer film applied to a lens—whether anti-reflective, hard coat, mirror, hydrophobic, or tint. These flaws reduce clarity, uniformity, or durability.
Examples include:

  • Uneven anti-reflective coating (rainbow patterns or blotches)
  • Newton’s rings from hardcoat/lens refraction index mismatch
  • Residual AR causing color variation between batches
  • Coating adhesion failures (peeling, crazing, cracking)
  • Inconsistent tint application, especially in photochromics
  • Hard coat irregularities that weaken scratch resistance
  • Pits or visible dots in the hard coat layer

Common causes of coating issues include improper lens surface prep, contamination in AR chambers, poor DI water quality, incorrect curing times/temperatures, or ineffective cleaning and vacuum routines.

Other physical defects

Not every defect fits neatly into surfacing or coating. Factors such as handling, environmental conditions, or equipment inconsistencies can introduce flaws that affect lens fit, finish, or durability. While less common, these issues underscore the importance of stable operating conditions, ongoing equipment calibration, and careful handling at every stage of production.

How to reduce lens errors in an optical lab

Early detection is critical to preventing flawed lenses from reaching customers. Implement these identification strategies at key production stages:

Pre-production verification

  • Material compatibility assessment: Verify that selected materials can achieve the required parameters and are appropriate for the intended frame type (e.g., rimless designs). When necessary, consult with the ECP if the chosen material could compromise durability.
  • Consistent maintenance: Regularly service machines and monitor environmental conditions in the production room to ensure stability and repeatability.
  • Inventory quality control: Check that semi-finished stock is stored properly and free from damage, and perform batch inspections to detect issues early.

In-process quality control

  • Automated inspection systems: Use software and digital tools to maintain accuracy at every production step. This can include quality assurance software, digital surface mapping, and tracking which machines a lens passes through. Logging this history helps labs identify where defects originate and address root causes more quickly. 
  • Manual inspection checkpoints: Conduct visual inspections after each major step for extra control. An experienced technician can also provide a secondary review of complex prescriptions to catch subtle issues that automation may miss. 

Final quality verification

  • Full prescription verification: Using calibrated lensmeters/focimeters
  • Mapping lenses: Confirming proper surface placement and power distribution, ensuring that the lens the customer will obtain is the one they want
  • Cosmetic inspection: Under multiple lighting conditions.
  • Physical parameter verification: Thickness and diameter

Implementing a structured identification process with multiple checkpoints helps labs catch errors early, when they are easiest to resolve. The sooner a problem is detected, the faster the root cause can be identified and corrected. With the right tools and workflows, labs can reduce remakes and errors without adding unnecessary burden to the production team.

Measurement tools for detecting errors

Labs can employ measurement tools and tests to help flag small deviations, such as optical power or surface form, before they leave the bench. 

  1. Lensometer/Focimeter: Used to verify optical parameters such as sphere, cylinder, axis, prism, and add power in progressive lenses. Digital models improve speed and accuracy compared to manual focimeters and often integrate with lab management systems for streamlined data capture.
  2. Surface mapping: Measures lens curvature and form accuracy, providing a detailed view of surface deviations that may not be visible with standard lensometry. Modern systems can also generate detailed power maps, and compare the theoretical surface with the actual surface, highlighting any differences.
  3. Physical inspection tools: Traditionally, calipers and thickness gauges were used to measure center and edge thickness, bevel size, and cut accuracy. Today, many of these tasks are automated with digital measurement systems and machine-vision inspection. For example, automated thickness gauges or frame-fit scanners can check bevel alignment and edge quality, while rimless-drill inspection systems ensure durability and consistency without relying on manual checks.
  4. Cosmetic inspection tools: Visual or automated checks that identify scratches, coating gaps, or edge-related defects. These inspections can detect incomplete AR treatments, missing coverage near edges, or visible lines that affect lens appearance and durability.

How to solve and prevent lens errors in your optical lab

Labs that routinely keep low remake rates excel in four areas: skilled people, reliable machines, friction-free workflows, and real-time data. Excellence in the following areas will help an optical lab prevent errors and remakes: 

1. Staff training and development

  • Comprehensive onboarding: New technicians shadow veteran operators and practice on scrap lenses until they can spot and correct common errors.
  • Continuous education: Consistent training on new materials, new machines and processes, changes in auxiliary materials, and coating chemistries keep techniques current.
  • Periodic quality reviews: Structured sessions to analyze recent defects, adapt standard operating procedures (SOPs) to new conditions, and identify long-term solutions to recurring issues.
  • Certification paths: Support staff in pursuing relevant standards-based training, such as ISO or ANSI certifications for ophthalmic optics, to validate skills and improve retention.

2. Equipment maintenance & calibration

  • Consistent critical checks: Follow manufacturer intervals for key equipment such as generators, vacuum pumps, coating systems, chemical concentrations, and temperatures. These preventative maintenance checks are fundamental for reliable and consistent performance.
  • Usage-based tool replacement: Retire cutting tools, polishing pads, polish slurry, and others based on cycle counts, rather than waiting for failure.
  • Environmental control: Maintain stable temperature (~20 °C / 68 °F) and humidity (<40%) in the lab, especially in the clean room when coating to minimize dust-related defects.

3. Process optimization

Consistent problem analysis and updates to Standard Operating Procedures (SOPs) help labs continuously improve and maintain reliable, efficient workflows. Some key practices include:

  • Standardized digital tickets: Barcode or RFID tags on every tray ensure prescription data flows directly from the LMS/EHR to machines (blocker, generator, polisher, edger, etc.) without manual re-keying or sign flips. This reduces transcription errors and speeds up throughput.
  • Critical-control checkpoints: Place quality-control gates after key steps (surfacing, tinting, coating, edging) so deviations are detected while rework is still possible and inexpensive. For example, checking prism and axis alignment right after surfacing prevents costly downstream remakes.
  • “Mistake-proofing” fixtures: Use asymmetric block pieces, keyed tray slots, and other poka-yoke style controls that physically prevent operators from loading lenses incorrectly.
  • Data-driven improvement: Effective process optimization depends on managing and analyzing production data. Many labs use statistical process control (SPC) tools like IOT Process Quality Control to monitor error rates, identify trends, and evaluate whether process changes are actually delivering improvements.

Bringing it together: The combination of structured SOP updates, reliable control points, physical mistake-proofing, and meaningful data analysis gives labs a closed-loop system for continuous improvement.

Solving lens errors when they occur

Despite best prevention efforts, errors will occasionally occur. Efficient resolution processes minimize their impact:

1. Contain
Quarantine the suspect batch numbers. If multiple tickets share the same time-stamp or machine ID, pause the line to prevent further escapes. This rapid isolation keeps defective optics from slipping into shipping while diagnostics begin.

2. Verify
Double-check or re-measure the lens and compare those readings with the job ticket and design file. Advanced labs may also use additional surface mapping tools to identify discrepancies.

3. Root-cause
Assemble a cross-functional team and run continuous improvement tools (such as 5 Whys, fishbone diagrams, or DMAIC) that includes machine technicians, coating leads, and customer service staff. Involving different perspectives helps ensure that both technical and commercial-related factors are considered when identifying the root cause.

4. Correct & prevent
Translate findings to production and QC people, also  into an SOP update, equipment recalibration, or supplier spec change, and share the fix in the next shift briefing so the learning sticks. Documenting both the issue and the remedy builds institutional memory that steadily raises first-pass yield.

5. Decide remake vs. rework
Establish clear internal criteria to determine when a lens can be reworked (for example, re-edged for size adjustments or recoated if surface treatments remain intact) versus when it must be fully remade. Having consistent rules reduces debate, speeds up decision-making, and ensures the wearer receives lenses that meet quality standards.

Why choose IOT for lens design and manufacturing support

IOT Lenses was built around the same error-prevention mindset needed for optical lab excellence. Our free-form designs have real-world manufacturing tolerances baked in, so small generator or coating drifts don’t translate into remakes. IOT’s design software tags every job with guardrails and flags aberrations or decentration drift before the lens reaches edging. When choosing IOT Lenses, you get a complete error-defense system, not just another lens catalog.

Contact us to learn more about how IOT can help your practice or lab with its error-free operations. 

You may also like: 

  • Advanced Insights into Progressive Lens Design
  • Trivex vs. Polycarbonate Lenses: Choosing the Right Material

Back to Blog

About the Authors

Victor Mayoral Bruno
Victor Mayoral Bruno
Process Engineer Manager

Víctor is a Process Engineer Manager at IOT Lenses, with over 20 years of experience in the optical industry. Prior to joining IOT, he led production and maintenance operations at several high-volume ophthalmic labs, including Prats and Essilor, where he managed complex automation systems and teams of up to 45 professionals. Víctor holds a degree in Industrial Engineering and an MBA, and brings deep expertise in quality control, lean manufacturing, and process improvement.

  • Linkedin
Read more

Related items

Lens Errors in Optical Labs: How to Identify & Prevent Costly Mistakes

Lens Errors in Optical Labs: How to Identify & Prevent Costly Mistakes

8 oct 2025 | Victor Mayoral Bruno

5 Types of Lens Coatings: What Labs & ECPs Need to Know

5 Types of Lens Coatings: What Labs & ECPs Need to Know

9 sept 2025 | Victor Mayoral Bruno

Trivex vs. Polycarbonate Lenses: Choosing the Right Material

Trivex vs. Polycarbonate Lenses: Choosing the Right Material

15 oct 2024 | Jordi Xing

Lighter Lenses with IOT Lenticularization

Lighter Lenses with IOT Lenticularization

28 feb 2024 | Deborah Kotob, ABOM

Helping Labs Deliver Excellent Free-Form Lenses

Helping Labs Deliver Excellent Free-Form Lenses

15 nov 2023 | Daniel Crespo

Sobre Nosotros
  • IOT en cifras
  • Los comienzos
  • Nuestro ADN
  • Nuestros cuatro pilares
  • Nuestros valores
CONTÁCTENOS
  • Contacta con ventas
  • Trabaja con nosotros
IOT Intelligence
  • Nuestro ecosistema de innovación
  • Nuestra metodología de innovación
  • IOT Freeform Designer
  • Tecnologías inteligentes
SERVICIOS PARA TU NEGOCIO
  • Full-Service Support
  • La experiencia IOT
  • IOT Business Consulting
  • IOT Technical Services
  • IOT Marketing Services
  • IOT Client Hub
LO QUE HACEMOS
  • Innovación como servicio
  • Nuestras tecnologías
  • Soluciones para la presbicia
  • Soluciones en monofocales
  • Neochromes
  • Custom lenses
  • Computer lenses
  • Comparativa de lentes
  • Soluciones
PRODUCTOS DESTACADOS
  • Neochromes with Camber
  • Camber Steady Plus Progressive
  • Endless Steady Progressive
  • Essential Steady Progressive
  • Endless Office Ocupational
  • Endless Drive Progressive
  • Endless Sport Progressive
  • Endless Single Vision
  • Endless Anti-fatigue Vision
Materiales
  • Trivex
  • CR-39
  • Policarbonato
  • Alto Índice
Our Brand Sites
  • light-form.com
  • neochromes.com
Política de Cookies Política de privacidad Aviso Legal Aviso Legal Canal de Denuncias ® Copyright 2021
Follow us on Linkedin Follow us on Facebook Follow us on Youtube Follow us on Instagram
Cookies

¿Aceptas nuestras cookies y política de privacidad?

Tu privacidad es importante para nosotros. Por ello te informamos que utilizamos cookies propias y de terceros para realizar análisis de uso y medición de nuestra página web con el fin de personalizar contenidos, así como proporcionar funcionalidades a las redes sociales o analizar nuestro tráfico. Para continuar acepta o modifica la configuración de nuestras cookies.

Rechazar Configurar cookies Aceptar
Política de Cookies
  • Tu privacidad
  • Cookies estrictamente necesarias
  • Cookies de preferencias o personalización
  • Cookies de análisis o medición
  • Política de Cookies

Tu privacidad es importante para nosotros

Las cookies son pequeños archivos de texto almacenados en tu ordenador cuando visitas nuestra web. Utilizamos cookies para mejorar tu experiencia en nuestro sitio web (por ejemplo, para recordar tu detalles de acceso).

Puedes cambiar tus preferencias y rechazar que algunos tipos de cookies sean almacenados en tu ordenador mientras estás navegando en nuestra web. Puedes cancelar cualquier cookie ya almacenada en tu ordenador, pero recuerda que cancelar los cookies puede impedirte utilizar algunas partes de nuestra web.

Cookies estrictamente necesarias

Estas cookies son esenciales para proveerte los servicios disponibles en nuestra web y para permitirte utilizar algunas características de nuestra web.

 

Cookies de preferencias o personalización

Estas cookies son utilizadas para ofrecerte una experiencia más personalizada y para recordar tus elecciones en nuestro sitio web.

Por ejemplo, podemos utilizar cookies de funcionalidad para recordar tu preferencias de idioma o tus detalles de acceso.

Cookies de análisis o medición

Estas cookies son utilizadas para recopilar información para analizar el tráfico en nuestra web y la forma en que los usuarios utilizan nuestra web.

Por ejemplo, estas cookies pueden recopilar datos como cuanto tiempo llevas navegado en nuestro sitio web o que páginas visitas, lo que nos ayuda a comprender cómo podemos mejorar nuestra web.

La información recopilada con estas cookies de análisis o medición no identifica a ningún visitante individual.

Política de Cookies

Para cumplir con la Ley 34/2002 de 11 de Julio, de Servicios de la Sociedad de la Información y el Comercio Electrónico (LSSICE), se informa de los siguientes aspectos legales:

 

PROPIEDAD DEL SITIO WEB

Responsable: INDIZEN OPTICAL TECHNOLOGIES SL - CIF B84465921- (En adelante IOT)
Domicilio social: C/Suero de Quiñones 34-36. 28002, Madrid (Madrid), España
Dirección: C/Suero de Quiñones 34-36. 28002, Madrid (Madrid), España
Contacto: Tel. 91 833 3786 - Email: proteccion_datos@iot.es
Datos de registro: Hoja M387390, folio 134, tomo 21750.
Actividad: Innovación en lentes

 

INFORMACIÓN Y TERMINOLOGÍAS ¿QUÉ SON LAS COOKIES?

Las cookies son archivos pequeños que las páginas web, tiendas online, intranets, plataformas online o similares, almacenan en el navegador del usuario que las visita y resultan necesarios para aportar a la navegación web innumerables ventajas en la prestación de servicios interactivos.

La siguiente información de los tipos posibles de cookies ayuda a comprender mejor las funciones que hacen posible:

  • Cookies de sesión: son cookies temporales que permanecen en el espacio de cookies de su equipo hasta que cierra el navegador, por lo que ninguna queda registrada en el disco del usuario. La información obtenida por medio de estas cookies sirve para hacer posible la gestión operativa con cada uno de los usuarios que está accediendo de forma simultánea a la web.
  • Cookies persistentes: son cookies que permanecen almacenadas en el espacio de cookies de su equipo una vez cerrado el navegador, y que volverá a consultar dicha página web la próxima vez que acceda a ella para recordar información que facilite la navegación (acceder directamente al servicio sin necesidad de hacer el proceso de login) o la prestación de un servicio comercial (ofrecer aquellos productos o servicios relacionados con anteriores visitas).

Las cookies intercambiadas al navegar por una página web pueden ser:

  • Cookies de origen o propias: son cookies generadas por la propia página web que se está visitando.
  • Cookies de terceros: son cookies que se reciben al navegar por esa página web, pero que han sido generadas por un tercer servicio que se encuentra hospedado en ella. Un ejemplo puede ser la cookie empleada por un anuncio o banner de publicidad que se encuentra en la página web que visitamos. Otro puede ser la cookie empleada por un contador de visitantes contratado por la página web que visitamos.

Las cookies pueden ser usadas para:

  • Fines técnicos: son las denominadas también “estrictamente necesarias”.  Permiten al  usuario  la  navegación a  través de una   página  web, plataforma o aplicación y la utilización de las diferentes opciones o servicios que en ella existan como, por  ejemplo, controlar el tráfico  y la comunicación de datos, identificar  la sesión, acceder a partes de acceso restringido, recordar los  elementos  que integran un pedido, realizar el proceso de compra de un pedido, realizar la solicitud de inscripción o participación en un evento, utilizar elementos de seguridad durante la navegación, almacenar contenidos para la difusión de videos o sonido o compartir contenidos a través de redes sociales.
  • Personalización: hacen posible que cada usuario pueda configurar aspectos como el lenguaje en el que desea ver la página web, formatos de visualización, etc.
  • Análisis o rendimiento: permiten medir el número de visitas y criterios de navegación de diferentes áreas de la web, aplicación o plataforma y nos permite elaborar perfiles de navegación de los usuarios de dichos sitios, aplicaciones y plataformas, con el fin de introducir mejoras en función del análisis de los datos de uso recabados que hacen los usuarios del servicio.
  • Publicidad: permiten implementar parámetros de eficiencia en la publicidad ofrecida en las páginas web.
  • Publicidad comportamental: permiten implementar parámetros de eficiencia en la publicidad ofrecida en las páginas web, basados en información sobre el comportamiento de los usuarios obtenido a través de la observación continuada de sus hábitos de navegación, lo que permite desarrollar un perfil específico para mostrar publicidad en función del mismo.

 

DETALLE DE COOKIES UTILIZADAS

El sitio Web de IOT utiliza cookies para el correcto funcionamiento y visualización de los sitios Web por parte del usuario, así como la recogida de datos estadísticos y analíticos sobre la navegación de los usuarios. IOT utiliza las siguientes cookies:
 

ANALÍTICAS Google Tag Manager

Descripción:
Estas Cookies recopilan información de tu experiencia de navegación en nuestros portales web de forma totalmente anónima. - Podemos contabilizar el número de visitantes de la página o los contenidos más vistos. 

Usos:

  • Podemos saber si el usuario que está accediendo es nuevo o repite visita.
  • Esa información puede ayudarnos a mejorar la navegación y darte un mejor servicio.


REDES SOCIALES

Descripción:
Las Cookies de redes sociales son utilizadas para unir la web con el perfil en la mencionada red social.

Usos:

  • Puedes hacer uso de este botón para redirigirte al perfil de IOT en LinkedIn, YouTube, Instagram y Facebook.

 

SERVICIOS DE TERCEROS

Adicionalmente, IOT tiene presencia en portales y servicios de terceros para los que, si desea conocer las condiciones de privacidad y uso de cookies, deberán consultarse las políticas proporcionadas por los mismos:

  • Facebook
  • Linkedin
  • Instagram
  • YouTube

 

ACEPTACIÓN POLÍTICA DE COOKIES

IOT muestra información sobre su Política de Cookies en la parte inferior de cualquier página del sitio Web con cada inicio de sesión con el objeto de que usted sea consciente.

Ante esta información es posible llevar a cabo las siguientes acciones:

  • Aceptar cookies: No se volverá a visualizar este aviso al acceder a cualquier página del portal durante la presente sesión
  • Rechazar cookies: No se volverá a visualizar este aviso al acceder a cualquier página del portal durante la presente sesión
  • Configuración de las cookies: Podrá obtener más información sobre cómo son las cookies, conocer la Política de Cookies de IOT y modificar la configuración para restringir o bloquear las cookies de IOT en cualquier momento. En el caso de restringir o bloquear las cookies puede ver reducidas las funcionalidades de la Web.

 

CÓMO MODIFICAR LA CONFIGURACIÓN DE LAS COOKIES

Usted puede restringir, bloquear o borrar las cookies de IOT o cualquier otra página web, utilizando su navegador. En cada navegador la operativa es diferente, la función de "Ayuda" le mostrará cómo hacerlo:

  • Internet Explorer
  • FireFox
  • Chrome
  • Safari
  • Opera

 

ACTUALIZACIÓN DE LA POLÍTICA DE COOKIES

Es posible que actualicemos la Política de Cookies de IOT, por ello le recomendamos revisar esta política cada vez que acceda a http://www.iotlenses.com con el objetivo de estar adecuadamente informado sobre cómo y para qué usamos las cookies.

 

 

Última actualización: 22 de diciembre de 2021